Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610427

RESUMO

Flexibility in performing various movements like standing, walking, and turning is crucial for navigating dynamic environments in daily life. Individuals with essential tremor often experience movement difficulties that can affect these postural transitions, limiting mobility and independence. Yet, little research has examined the performance of postural transitions in people with essential tremor. Therefore, we assessed postural transition performance using two versions of the timed up and go test: the standard version and a more complex water-carry version. We examined the total duration of the standard and water-carry timed up and go in 15 people with and 15 people without essential tremor. We also compared the time taken for each phase (sit-to-stand phase, straight-line walk phase, stand-to-sit phase) and the turning velocity between groups. Our findings revealed decreased performance across all phases of standard and water-carry timed up and go assessments. Further, both ET and non-ET groups exhibited reduced performance during the water-carry timed up and go compared to the standard timed up and go. Evaluating specific phases of the timed up and go offers valuable insights into functional movement performance in essential tremor, permitting more tailored therapeutic interventions to improve functional performance during activities of daily living.


Assuntos
Tremor Essencial , Humanos , Atividades Cotidianas , Equilíbrio Postural , Estudos de Tempo e Movimento , Água
2.
Res Sq ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558996

RESUMO

As age increases, a decline in lower extremity strength leads to reduced mobility and increased fall risks. This decline outpaces the age-related reduction in muscle mass, resulting in mobility limitations. Older adults with varying degrees of mobility-disability use different stepping strategies. However, the link between functional lower extremity strength and stepping strategy is unknown. Therefore, understanding how age-related reductions in functional lower extremity strength influence stepping strategy is vital to unraveling mobility limitations. Participants were recruited and tested at a local community event, where they were outfitted with IMUs and walked across a pressurized walkway. Our study reveals that older adults with normal strength prefer adjusting their step time during walking tasks, while those with reduced strength do not exhibit a preferred stepping strategy. This study provides valuable insights into the influence of functional lower extremity strength on stepping strategy in community-dwelling older adults during simple and complex walking tasks. These findings could aid in diagnosing gait deviations and developing appropriate treatment or management plans for mobility disability in older adults.

3.
Front Sports Act Living ; 5: 1217783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046933

RESUMO

Individuals with an anterior cruciate ligament reconstruction (ACLR) commonly exhibit altered gait patterns, potentially contributing to an increased risk of osteoarthritis (OA). Joint moment contributions (JMCs) and support moments during incline and decline running are unknown in healthy young adults and individuals with an ACLR. Understanding these conditional joint-level changes could explain the increased incidence of OA that develops in the long term. Therefore, this knowledge may provide insight into the rehabilitation and prevention of OA development. We aimed to identify the interlimb and between-group differences in peak support moments and subsequent peak ankle, knee, and hip JMCs between individuals with an ACLR and matched controls during different sloped running conditions. A total of 17 individuals with unilateral ACLR and 17 healthy individuals who were matched based on sex, height, and mass participated in this study. The participants ran on an instrumented treadmill at an incline of 4°, decline of 4°, incline of 10°, and decline of 10°. The last 10 strides of each condition were used to compare the whole-stance phase support moments and JMCs between limbs, ACLR, and control groups and across conditions. No differences in JMCs were identified between limbs or between the ACLR and healthy control groups across all conditions. Support moments did not change among the different sloped conditions, but JMCs significantly changed. Specifically, ankle and knee JMCs decreased and increased by 30% and 33% from an incline of 10° to a decline of 10° running. Here, the lower extremities can redistribute mechanics across the ankle, knee, and hip while maintaining consistent support moments during incline and decline running. Our data provide evidence that those with an ACLR do not exhibit significant alterations in joint contributions while running on sloped conditions compared to the matched controls. Our findings inform future research interested in understanding the relationship between sloped running mechanics and the incidence of deleterious acute or chronic problems in people with an ACLR.

4.
Prosthet Orthot Int ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37870367

RESUMO

OBJECTIVE: The aim of this study was to characterize the relationship between prosthetic device and service satisfaction, health-related quality of life (HRQOL), and functional movement in a diverse population of lower limb prosthesis users. METHODS: An online survey was conducted on individuals with lower limb amputation between September and October 2021. Sample validated questionnaires assessing demographic and clinical features, satisfaction, functional outcomes, and quality of life were analyzed using path analysis. RESULTS: Participants were 1736 individuals with lower limb amputation. Overall, 44% of participants reported dissatisfaction with prosthetic device, whereas 37% were dissatisfied with prosthetic service. Low functional mobility was reported by 58% of participants and 61% reported low HRQOL. Lower extremity functional status (ß = 0.55), HRQOL (ß = 0.08), Activities-specific Balance Scale (ß = 0.22), and modified fall efficacy scale (ß = -0.07) are significantly associated with prosthetic device satisfaction (P < 0.0005, R2 = 0.47). Satisfaction with provider service was significantly associated with lower extremity functional status (ß = 0.44) and balance confidence (ß = 0.18) (P < 0.0005, R2 = 0.34). CONCLUSION AND CLINICAL RELEVANCE: Civilians, veterans, and service members reported low functional mobility, low quality of life, and moderate levels of dissatisfaction with their lower extremity prosthetic device and provider service. Improvements in mobility, balance, quality of life, and fall efficacy may enhance device satisfaction. Functional mobility and balance improvements may increase ratings of provider service. This study provides feedback that may improve clinical decisions on lower limb prosthesis patient care.

5.
Front Rehabil Sci ; 4: 1235693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691914

RESUMO

Introduction: The purpose of this study was to explore relationships between patient-specific characteristics and initial ankle-foot prosthesis prescription patterns among U.S. Service members with unilateral transtibial limb loss. Methods: A retrospective review of health records identified 174 individuals with unilateral transtibial limb loss who received care at Walter Reed National Military Medical Center between 2001 and 2019. We examined patient-specific factors such as demographics, participant duty status at injury and amputation, amputation etiology, and timing between injury, amputation, and initial prescription. The type of first prescribed ankle-foot prosthesis was categorized as energy storing and return - nonarticulating, energy storing and return - articulating, or computer controlled. Results: Sex, amputation etiology, time from injury to initial prescription, and time from amputation to initial prescription differed by type of initial ankle-foot prosthesis prescription. Service members with shorter intervals between injury-initial prescription and amputation-initial prescription, and those injured by combat blast, were more likely to receive a non-articulating device. Incorporating sex, time from injury-initial prescription, time from amputation-initial prescription, and amputation etiology as predictors of prosthesis type, we were able to correctly classify 72% of all first prostheses prescribed. Discussion: Patient-specific characteristics such as sex, the time between injury-initial prescription, time from amputation-initial prescription and amputation etiology are essential characteristics that influence initial ankle-foot prosthesis prescription patterns in U.S. Service members.

6.
PLoS One ; 18(6): e0286649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267314

RESUMO

Changing movement patterns in response to environmental perturbations is a critical aspect of gait and is related to reducing the energetic cost of the movement. Exercise improves energetic capacity for submaximal exercise and may affect how people adapt movement to reach an energetic minimum. The purpose of this study was to determine whether self-reported exercise behavior influences gait adaptation in young adults. Young adults who met the optimal volume of exercise according to the Physical Activity Guidelines for Americans (MOVE; n = 19) and young adults who did not meet the optimal volume of exercise (notMOVE; n = 13) walked on a split-belt treadmill with one belt moving twice the speed of the other belt for 10 minutes. Step length asymmetry (SLA) and mechanical work done by each leg were measured. Nonlinear mixed effects models compared the time course of adaptation between MOVE and notMOVE, and t-tests compared net work at the end of adaptation between MOVE and notMOVE. Compared to notMOVE, MOVE had a faster initial response to the split belt treadmill, and continued to adapt over the duration of split-belt treadmill walking. Young adults who engage in sufficient amounts of exercise responded more quickly to the onset of a perturbation, and throughout the perturbation they continued to explore movement strategies, which might be related to reduction of energetic cost. Our findings provide insights into the multisystem positive effects of exercise, including walking adaptation.


Assuntos
Marcha , Caminhada , Adulto Jovem , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Adaptação Fisiológica/fisiologia , Teste de Esforço/métodos , Aclimatação
7.
Sci Rep ; 13(1): 6056, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055464

RESUMO

Mediolateral stability during walking requires active control and is complex. Step width, a proxy for stability, follows a curvilinear relationship as gait speeds increase. However, despite the complexity of maintenance for stability, no study has yet investigated the variation across individuals of the relationship between speed and step width. The purpose of this study was to determine if variation between adults affects the estimation of the relationship between speed and step width. Participants walked on a pressurized walkway 72 times. Gait speed and step width were measured within each trial. Mixed effects models assessed the relationship between gait speed and step width, and the variability in the relationship across participants. The relationship between speed and step width followed a reverse J-curve on average, but the relationship was moderated by participants' preferred speed. Step width response as speed increases is not homogenous in adults. This finding suggests that "appropriate" stability moderation (tested across a range of speeds) differs as a function of an individual's preferred speed. Mediolateral stability is complex, and further research to elucidate individual factors contributing to variation is needed.


Assuntos
Marcha , Velocidade de Caminhada , Adulto , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos
8.
Aging Clin Exp Res ; 35(3): 621-631, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36705894

RESUMO

BACKGROUND: Environmental hazards (e.g., pedestrian traffic) cause falls and testing environment impacts gait in older adults. However, most fall risk evaluations do not assess real-world moving hazard avoidance. AIMS: This study examined the effect of fall history in older adults on acceleration profiles before, during, and after a near collision with a moving hazard, in laboratory and real-world settings. METHODS: Older adults with (n = 14) and without a fall history (n = 15) performed a collision avoidance walking task with a sudden moving hazard in real-world and laboratory settings. Gait acceleration and video data of participants' first-person views were recorded. Four mixed effects multilevel models analyzed the magnitude and variability of mean and peak anteroposterior and mediolateral acceleration while walking before, during, and after the moving hazard in both environments. RESULTS: In the real-world environment, older adults without a fall history increased their mean anteroposterior acceleration after the moving hazard (p = 0.046), but those with a fall history did not (p > 0.05). Older adults without a fall history exhibited more intersubject variability than those with a fall history in mean (p < 0.001) and peak anteroposterior (p = 0.015) acceleration across environments and epochs. Older adults without a fall history exhibited a slower peak mediolateral reaction during the moving hazard (p = 0.014) than those with a fall history. CONCLUSIONS: These results suggest that compared to older adults with a fall history, older adults without a fall history are more adaptable and able to respond last-minute to unexpected hazards. Older adults with a fall history exhibited more homogenous responses.


Assuntos
Pedestres , Humanos , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Medição de Risco , Aceleração
9.
J Strength Cond Res ; 37(1): 74-83, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515592

RESUMO

ABSTRACT: Holmes, HH, Downs Talmage, JL, Neely, KA, and Roper, JA. Cognitive demands influence drop jump performance and relationships with leg stiffness in healthy young adults. J Strength Cond Res 37(1): 74-83, 2023-Sports-relevant cognition influences neuromuscular control and sports performance. This study assessed the influence of cognition on (a) drop jump performance and (b) commonly researched relationships between lower extremity stiffness, ground contact time (GCT), peak vertical ground reaction force (vGRF), and leg deformation. Active adults (n = 33, 13 men, 20 women, 21 ± 2 years, height = 1.71 ± 0.81 m, body mass = 70.5 ± 10.6 kg) participated in decisions to perform drop jumps or lands of a 30-cm box in 4 conditions: (a) standard, explicit instructions; (b) choice, internally driven decisions; and (c and d) visual and audio, external visual or audio cues reducing time for motor planning. Significance was set at p < 0.05. Ground contact time with audio (M ± SD: 0.62 ± 0.14 seconds) and visual cues (0.59 ± 0.10 seconds) was longer than standard instructions (0.54 ± 0.10 seconds). Standard condition jump height was higher (0.49 ± 0.10 m) than audio (0.435 ± 0.10 m) and choice (0.44 ± 0.09 m). Standard condition reactive strength index was higher (1.03 ± 0.35) than audio (0.76 ± 0.23), visual (0.82 ± 0.27), and choice (0.84 ± 0.33). Visual and audio conditions did not demonstrate significant relationships between leg stiffness and GCT, and relationships between vGRF and leg deformation were not significant with visual cues (p > 0.05). Cognition did not significantly change stiffness and vGRF, indicating alternative force strategies. Understanding how cognition influences performance can positively affect coaching practices, sports-specific assessments, and rehabilitation applications.


Assuntos
Desempenho Atlético , Perna (Membro) , Masculino , Adulto Jovem , Humanos , Feminino , Fenômenos Biomecânicos , Cognição
11.
Mil Med ; 188(1-2): e254-e259, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34259328

RESUMO

INTRODUCTION: The purpose of the present study was to investigate core exercise training and whole-body vibration (WBV) as a training method to improve performance and recovery from an 8-km military foot march in novice trainees. MATERIALS AND METHODS: A 3 × 5 repeated measures randomized control trial was used to evaluate the effects of core exercise training and WBV on performance and recovery from an 8-km foot march. Thirty-nine participants were randomized into three groups: core exercise (Ex), WBV with core exercise (WBVEx), and control. Each participant completed two 8-km foot marches (FM1 and FM2) with a 35 pound rucksack, separated by 4 weeks. Participants in the Ex and WBVEx groups completed 3 weeks of core exercise training, three times per week in between FM1 and FM2. Performance time, creatine kinase (CK), and interleukin-6 (IL-6) were measured. The Auburn University Institutional Review Board approved all aspects of this study (protocol number: 19-211 MR 1907). RESULTS: Performance time (P < .001) and CK (P = .005) were significantly improved during FM2 as compared to FM1. The Ex (d = -0.295) and WBVEx (d = -0.645) treatments had a large effect on performance time. CK (P < .001) and IL-6 (P < .001) were significantly elevated at the completion of the foot march regardless of group. Only CK remained elevated for 2 days (P < .001) following the foot march. CONCLUSIONS: Core exercise training with or without WBV improved 8-km foot march performance time by 5-6 minutes. The improvements are likely because of an increase in trunk stability. Additionally, this study showed that completing two identical foot marches a month apart increases performance and improves recovery.


Assuntos
Militares , Vibração , Humanos , Vibração/uso terapêutico , Interleucina-6 , Exercício Físico , Extremidade Inferior , Força Muscular
12.
Cerebellum ; 22(3): 394-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35414041

RESUMO

The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Tremor Essencial , Humanos , Marcha Atáxica/etiologia , Tremor , Consenso , Ataxia Cerebelar/complicações , Ataxia/complicações , Doenças Cerebelares/complicações , Marcha/fisiologia
13.
PLoS One ; 17(9): e0274121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054227

RESUMO

Sleep loss is a common phenomenon with consequences to physical and mental health. While the effects of sleep restriction on working memory are well documented, it is unknown how sleep restriction affects continuous force control. The purpose of this study was to determine the effects of sleep restriction on visually and memory-guided force production magnitude and variability. We hypothesized that both visually and memory-guided force production would be impaired after sleep restriction. Fourteen men participated in an eleven-day inpatient sleep study and completed a grip force task after two nights of ten hours' time in bed (baseline); four nights of five hours' time in bed (sleep restriction); and one night of ten hours' time in bed (recovery). The force task entailed four 20-second trials of isometric force production with the thumb and index finger targeting 25% of the participant's maximum voluntary contraction. During visually guided trials, participants had continuous visual feedback of their force production. During memory-guided trials, visual feedback was removed for the last 12 seconds of each trial. During both conditions, participants were told to maintain the target force production. After sleep restriction, participants decreased the magnitude of visually guided, but not memory-guided, force production, suggesting that visual attention tasks are more affected by sleep loss than memory-guided tasks. Participants who reported feeling more alert after sleep restriction and recovery sleep produced higher force during memory-guided, but not visually guided, force production, suggesting that the perception of decreased alertness may lead to more attention to the task during memory-guided visual tasks.


Assuntos
Desempenho Psicomotor , Distúrbios do Início e da Manutenção do Sono , Retroalimentação Sensorial , Força da Mão , Humanos , Masculino , Polissonografia , Sono , Privação do Sono
14.
Gait Posture ; 96: 236-243, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700641

RESUMO

BACKGROUND: The maintenance of stability during walking is critical for successful locomotion. While targeted balance training can improve stability, it is unclear how simply meeting recommended physical activity guidelines may impact dynamic stability in healthy young adults. RESEARCH QUESTION: Examining the differences in the mediolateral margin of stability (ML-MOS) and the variability of the ML-MOS in physically active and inactive young adults across a range of stability-challenging walking tasks METHOD: Twenty-one physically active and twenty inactive young adults completed four experimental walking conditions: (1) Overground Walking, (2) Tandem Walking, (3) Beam Walking, and (4) Stepping-Stones. The ML-MOS and coefficient of variation of the ML-MOS were calculated at each heel strike while participants walked at their preferred walking speed. A two-way mixed-effects ANOVA was conducted to examine the effects of group and condition and their interaction on ML-MOS and ML-MOS variability RESULTS: Neither the ML-MOS nor the variability of the ML-MOS was significantly different between physically active and physically inactive young adults during any experimental walking conditions. A significant main effect of the experimental walking condition was observed, with the ML-MOS decreasing from overground walking to the tandem and beam walking conditions. The ML-MOS also became more variable in the tandem, beam, and stepping-stones conditions than in overground gait. SIGNIFICANCE: Physical activity status did not influence frontal plane dynamic balance in healthy young adults, even in stability-challenging environments. Conditions that constrain step width, such as tandem and beam walking, are adequate for challenging frontal plane dynamic balance and indicate that trunk kinematics may be adjusted when step width is constrained.


Assuntos
Marcha , Equilíbrio Postural , Fenômenos Biomecânicos , Humanos , Caminhada , Velocidade de Caminhada , Adulto Jovem
15.
Exp Gerontol ; 161: 111710, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090973

RESUMO

It is not well understood how older adults meet the combined locomotor demands of obstacle avoidance at fast speeds as compared to obstacle avoidance under cognitive loads. The purpose of this study was to quantify changes in locomotor stability (margin of stability, MOS) from walking to crossing obstacles at fast speeds versus with added cognitive demands in older adults. Community-dwelling older adults walked on an unobstructed and obstructed path at their preferred speed (preferred); during a dualtask (verbal fluency); and at their 'fastest comfortable' speed (fast). We used motion capture to calculate MOS in the anteroposterior direction, and compared minimum MOS between crossing foot and support phase (lead single support, lead double support, trail single support, trail double support) and tested for within subject changes using a linear mixed effect regression model [Condition (preferred, fluency, fast) x Walkway (unobstructed, obstructed) x Phase (single support, double support) x Foot (lead, trail)]. We examined crossing kinematics (approach distance, toe clearance, and recovery distance) between conditions. A significant omnibus effect partially supported our predictions. A Condition x Walkway x Phase interaction supported that older adults increased stability under a cognitive load and prioritized stability, demonstrated by not changing MOS from walking to obstacle crossing. During fast obstacle crossing they decreased stability during double support and exhibit more stability in single support, when vulnerable to external perturbations (contacting the obstacle). During a dual-task, older adults took shorter and higher steps over the obstacle to ensure they cleared it safely, but at fast speeds they increased the length of their crossing step without higher toe clearance. The results suggest older adults attempt to preserve stability when crossing obstacles under both cognitive and speed demands, but may be unable to ensure a safer limb elevation to avoid obstacles at fast speeds as they do under cognitive demands.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , , Cinética
16.
Gait Posture ; 95: 223-226, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-31395467

RESUMO

BACKGROUND: Variability in gait speed is influenced by age and health status. However, no study has investigated the effects of different instructions on gait speed. RESEARCH QUESTION: This study investigated how walking prompts contributed to variability in gait speed. METHODS: Participants walked on a pressurized walkway. Gait speed variability was assessed using multilevel modeling. RESULTS: 61% of the variance in gait speed was due to instruction, while 14% was due to individual differences. SIGNIFICANCE: Reference values for gait speed across a number of prompts will be highly useful for assessing gait performance in young adults. Further, the instruction given produces a large amount of variability in selected walking speed. This finding urges researchers to maintain consistency when delivering walking instructions.


Assuntos
Marcha , Velocidade de Caminhada , Nível de Saúde , Humanos , Valores de Referência , Caminhada , Adulto Jovem
17.
Percept Mot Skills ; 128(6): 2490-2506, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590936

RESUMO

Split-belt treadmills have become an increasingly popular means of quantifying ambulation adaptability. Multiple sensory feedback mechanisms, including vision, contribute to task execution and adaptation success. No studies have yet explored visual feedback effects on locomotor adaptability across a spectrum of available visual information. In this study, we sought to better understand the effects of visual information on locomotor adaptation and retention by directly comparing incremental levels of visual occlusion. Sixty healthy young adults completed a split-belt adaptation protocol, including a baseline, asymmetric walking condition (adapt), a symmetric walking condition (de-adapt), and another asymmetric walking condition (re-adapt). We randomly assigned participants into conditions with varied visual occlusion (i.e., complete and lower visual field occlusion, or normal vision). We captured kinematic data, and outcome measures included magnitude of asymmetry, spatial and temporal contributions to step length asymmetry, variability of the final adapted pattern, and magnitude of adaptation. We used repeated measures and four-way MANOVAs to examine the influence of visual occlusion and walking condition. Participants with complete, compared to lower visual field visual occlusion displayed less consistency in their walking pattern, evident via increased step length standard deviation (p = .007, d = 0.89), and compared to normal vision groups (p = .003 d = 0.81). We found no other group differences, indicating that varying levels of visual occlusion did not significantly affect locomotor adaptation or retention. This study offers insight into the role vision plays in locomotor adaptation and retention with clinical utility for improving variability in step control.


Assuntos
Adaptação Fisiológica , Marcha , Fenômenos Biomecânicos , Teste de Esforço , Humanos , Caminhada , Adulto Jovem
18.
Gait Posture ; 89: 86-91, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256264

RESUMO

BACKGROUND: The ability to walk at various speeds is essential to independence for older adults. Maintaining fast walking requires changes in spatial-temporal measures, increasing step length and/or decreasing step time. It is unknown how mobility affects the parameters that change between preferred and fast walking. RESEARCH QUESTION: How does preferred walking performance and measures of strength and mobility relate to the approach (decreasing step time or increasing step length) older adults at risk for mobility disability use to maintain fast walking speeds?. METHODS: Peak isokinetic dynamometry of knee and ankle and several mobility evaluations, including the Timed Up-and-Go, Short Physical Performance Battery, and Dynamic Gait Index, assessed mobility and strength in 57 participants, aged 65-80. Biomechanical gait analysis was used to analyze step length, step time, gait speed at preferred and fast gait speeds and ground reaction force during preferred walking. A score combining the differences between step length and time at fast and preferred speeds (Length-Time Difference) separated participants into two groups: (1) Length, representing a predominant increase in step length to walk fast and (2) Time, a predominant decrease in step time. RESULTS: Those who decreased step time to produce increased speed performed worse during repeated chair stands (p = .006) with no difference in isokinetic strength (p ≥ .15). During preferred walking, the Time group displayed increased propulsive impulse compared to the Length group (p = .007), despite no differences in preferred speed, step length, or time (p ≥ .50). SIGNIFICANCE: While kinetics of preferred walking differed between groups separated by Length-Time Difference, basic spatial-temporals of preferred walking did not in this homogenous population. Length-Time Difference relates to a common mobility assessment and could be easily calculated by clinicians to provide a quantitative and more sensitive measure of ambulatory performance.


Assuntos
Marcha , Caminhada , Idoso , Tornozelo , Humanos , Joelho , Velocidade de Caminhada
19.
Front Sports Act Living ; 3: 637516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164619

RESUMO

The primary purpose of this study was to examine how the type and magnitude of changes in running behavior, as a consequence of COVID-19 pandemic restrictions, influence running-related injuries. Secondarily, we aimed to examine how lifestyle and psychosocial well-being measures may influence running behavior change. An online survey was advertised to individuals over the age of 18 that currently run or have previously participated in running for exercise. The survey questions examined injury history and new injuries sustained during COVID-19 restrictions, as well as changes related to training behavior changes, training environment changes, social behaviors, and psychosocial well-being. Changes reflected differences in running behaviors prior to COVID-19 restrictions (1 month prior to COVID-19 restrictions being imposed) and during COVID-19 restrictions (May 5 to June 10, 2020). A total of 1,035 runners were included in the analysis. Current injuries sustained during COVID-19 occurred in 9.5% of the runners. Injured runners made a greater number of total changes (p = 0.031) as well as training-related (p = 0.042) and environment-related (p = 0.017) changes compared with uninjured runners. A significant relationship was found between injury and those that reported less time to exercise to changes in work environment (p = 0017). This study highlights the multi-dimensional nature of running-related injuries and the need to consider the interaction of multiple changes in running behavior, rather than isolating single factors. Greater understanding of the underlying causes of running-related injuries can help reduce the risk of future injury.

20.
J Appl Biomech ; 37(3): 277-281, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931571

RESUMO

Walking is an integral indicator of human health commonly investigated while walking overground and with the use of a treadmill. Unlike fixed-speed treadmills, overground walking is dependent on the preferred walking speed under the individuals' control. Thus, user-driven treadmills may have the ability to better simulate the characteristics of overground walking. This pilot study is the first investigation to compare a user-driven treadmill, a fixed-speed treadmill, and overground walking to understand differences in variability and mean spatiotemporal measures across walking environments. Participants walked fastest overground compared to both fixed and user-driven treadmill conditions. However, gait cycle speed variability in the fixed-speed treadmill condition was significantly lower than the user-driven and overground conditions, with no significant differences present between overground and user-driven treadmill walking. The lack of differences in variability between the user-driven treadmill and overground walking may indicate that the user-driven treadmill can better simulate the variability of overground walking, potentially leading to more natural adaptation and motor control patterns of walking.


Assuntos
Teste de Esforço , Caminhada , Adaptação Fisiológica , Fenômenos Biomecânicos , Marcha , Humanos , Projetos Piloto , Velocidade de Caminhada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA